High Temperature Teaching and Test Reactor (HT³R) NRC Information Meeting

HT³R Technical Information

Malcolm P. LaBar General Atomics May 11, 2006

Outline

- Relevant licensing background information
- General description of overall HT³R system
- Proposed reactor size, rating and operating conditions
- Passive safety features
- Use of existing technology
- Summary

HT³R Envisioned to Function in Same Capacity as TRIGA Reactors

- TRIGA (Training, Research, Isotope production, General Atomics) has made significant contribution to current generation of nuclear power
 - Most widely used training and research reactor in the world
 - 65 reactors in 24 countries
- HT³R & TRIGA share many characteristics:
 - Large prompt negative temperature coefficient of reactivity
 - Relatively complete retention of Fission Products
 - Immune to failure of electric power or cooling
- HT³R is being designed to support technology development for the next generation of nuclear power

A Brief Summary of Helium-Cooled, Graphite-Moderated, Reactor Operation

Power Reactors

Research Reactors

Power Level:
MW(t)
MW(e)
Coolant:
Pressure, Mpa
Inlet Temp, °C
Outlet Temp, °C
Fuel type
Peak fuel temp, °C
Fuel form

Peach Bottom 1 1966-1974	Fort St Vrain 1976-1989	THTR 1986-1989
115	842	750
40	330	300
2.5	4.8	4
344°C	406°C	250°C
750°C	785°C	750°C
(U-Th)C ₂ PyC coated particles	(U-Th)C₂ TRISO	(U-Th)O₂ TRISO
~1000°C Graphite compacts in hollow rods	1260°C Graphite Compacts in Hex blocks	1350°C Graphite Pebbles

Dragon 1966-1975	AVR 1967-1988	HTTR 2000-	HTR-10 2003-
20	46	30	10
_	15		
2	1.1	4	3
350°C	270°C	395°C	250°C/300°C
750°C	950°C	850°C/950°C	700°C/900°C
(U-Th)C ₂ PyC	(U-Th)O ₂ TRISO	(U-Th)C ₂ PyC	(U-Th)O ₂ PyC
particles		particles	particles
~1000°C	1350°C	~1250°C	
Graphite Hex blocks	Graphite Pebbles	Graphite compacts in Hex blocks	Graphite Pebbles

^{**} More than 30 CO2-cooled, graphite-moderated reactors have been built and 10 are nowoperating in the United Kingdom for power production.
TRISO particles are fuel kernels coated with SiC and PyC

RENEWED WORLD-WIDE INTEREST IN HELIUM-COOLED REACTORS BECAUSE OF THEIR SAFETY AND HIGH TEMPERATURE APPLICATIONS

Significant Experience Exists for High Temperature Gas Reactor (HTGR) Licensing

- Peach Bottom 1 ('67 '74)
 - Construction License
 - Operating License
 - Decommissioned
- Fort St Vrain ('79 '88)
 - Construction License
 - Operating License
 - Decommissioned
- Large HTGR (mid '70s)
 - Summit 1 & 2 construction permit issued
 - Fulton 1 & 2 PSAR submitted
- Modular HTGR (late '80s)
 - Preliminary Safety Information Document (PSID) submitted to and reviewed by NRC

Overall System Characteristics Selected for HT³R

- HTGR key characteristics (Helium coolant, graphite moderator, coated particle fuel)
- Proven hexagonal graphite fuel element blocks with coated particle fuel in compacts; 10% enriched UO₂ fuel
- Passive safety characteristics same as modular helium reactors
- Coolant circulator and heat exchanger in primary loop.
 (Reactor heat transfer through heat exchanger to secondary loop for rejection to atmosphere)
- Provisions for add-on heat utilization systems in secondary loop

Schematic HT³R Process Flow Diagram

Coated Particle Fuel Ceramic Coatings Retain Their Integrity Under High Temperature Conditions

Coated Particles Stable To Beyond Maximum Accident Temperatures

General Arrangement of HT³R Reactor System

HT³R Core Arrangement

HT³R Reactor Arrangement

Proposed HT³R Core Size, Rating and Operating Conditions

- Tentative core selection:
 - Hexagonal fuel element block 360 mm wide (across flats) by 793 mm high
 - 76 fuel element blocks, 19 columns, 4 rows high
 - 25 MWt power
- Key selection criteria include:
 - Thermal power level sufficient for generating 10 MWe (with suitable power conversion system)
 - Fuel performance within proven limits
- Key operating parameters include:
 - Outlet temperature ~850°
 - Power density ~3.5 w/cc
 - Max fuel temp <1250°C
 - Primary system pressure ~3MPa

HT³R Design to Include Passive Reactor Cavity Cooling System for Removal of Core Decay Heat

- Primary system located below grade in concrete silo
- Decay heat radiates from vessel to natural draft air cooling system
- No pumps or fans required

REACTOR CAVITY COOLING SYSTEM PANELS

HT³R Passive Safety by Design

- Fission Products Retained in Coated Particles
 - High temperature stability materials
 - Refractory coated fuel
 - Graphite moderator
- Worst case fuel temperature limited by design features
 - Low power density
 - Passive heat removal
- Core Shuts Down Without Rod Motion

HT³R Being Designed to Use Existing Technology

- Design objective: Use of proven technology to maximum possible extent (little or no need for new R&D)
- Design approaches and principles:
 - Use of proven fuel element and fuel particle designs
 - Fuel designed to operate within proven performance parameters
 - Use of materials qualified for the intended service conditions
 - Use of previously proven service and auxiliary systems
 - Design characteristics having test reactor licensing precedence

Summary of HT³R Technical Information

- Licensing to draw upon prior TRIGA and gas reactor licensing experience
- Employs key HTGR characteristics (He coolant, graphite moderator, coated particle fuel)
- Tentative core size, rating and operating conditions identified
- Passive safety capability
- Use of existing technology to maximum practical extent